Files
decisiontree/lib/decisiontree/id3_tree.rb
Brian Underwood 13aed0b2ae Simplify with #sum
2017-04-11 14:57:32 -04:00

364 lines
11 KiB
Ruby
Executable File

# The MIT License
#
### Copyright (c) 2007 Ilya Grigorik <ilya AT igvita DOT com>
### Modifed at 2007 by José Ignacio Fernández <joseignacio.fernandez AT gmail DOT com>
module DecisionTree
Node = Struct.new(:attribute, :threshold, :gain)
using ArrayClassification
class ID3Tree
def initialize(attributes, data, default, type)
@used = {}
@tree = {}
@type = type
@data = data
@attributes = attributes
@default = default
end
def train(data = @data, attributes = @attributes, default = @default)
attributes = attributes.map(&:to_s)
initialize(attributes, data, default, @type)
# Remove samples with same attributes leaving most common classification
data2 = data.inject({}) do |hash, d|
hash[d.slice(0..-2)] ||= Hash.new(0)
hash[d.slice(0..-2)][d.last] += 1
hash
end
data2 = data2.map do |key, val|
key + [val.sort_by { |_, v| v }.last.first]
end
@tree = id3_train(data2, attributes, default)
end
def type(attribute)
@type.is_a?(Hash) ? @type[attribute.to_sym] : @type
end
def fitness_for(attribute)
case type(attribute)
when :discrete
proc { |*args| id3_discrete(*args) }
when :continuous
proc { |*args| id3_continuous(*args) }
end
end
def id3_train(data, attributes, default, _used={})
return default if data.empty?
# return classification if all examples have the same classification
return data.first.last if data.classification.uniq.size == 1
# Choose best attribute:
# 1. enumerate all attributes
# 2. Pick best attribute
# 3. If attributes all score the same, then pick a random one to avoid infinite recursion.
performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) }
max = performance.max { |a,b| a[0] <=> b[0] }
min = performance.min { |a,b| a[0] <=> b[0] }
max = performance.sample if max[0] == min[0]
best = Node.new(attributes[performance.index(max)], max[1], max[0])
best.threshold = nil if @type == :discrete
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
tree, l = {best => {}}, ['>=', '<']
case type(best.attribute)
when :continuous
partitioned_data = data.partition do |d|
d[attributes.index(best.attribute)] >= best.threshold
end
partitioned_data.each_with_index do |examples, i|
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0))
end
when :discrete
values = data.collect { |d| d[attributes.index(best.attribute)] }.uniq.sort
partitions = values.collect do |val|
data.select do |d|
d[attributes.index(best.attribute)] == val
end
end
partitions.each_with_index do |examples, i|
tree[best][values[i]] = id3_train(examples, attributes - [values[i]], (data.classification.mode rescue 0))
end
end
tree
end
# ID3 for binary classification of continuous variables (e.g. healthy / sick based on temperature thresholds)
def id3_continuous(data, attributes, attribute)
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
thresholds = []
return [-1, -1] if values.size == 1
values.each_index do |i|
thresholds.push((values[i] + (values[i + 1].nil? ? values[i] : values[i + 1])).to_f / 2)
end
thresholds.pop
#thresholds -= used[attribute] if used.has_key? attribute
gain = thresholds.collect do |threshold|
sp = data.partition { |d| d[attributes.index(attribute)] >= threshold }
pos = (sp[0].size).to_f / data.size
neg = (sp[1].size).to_f / data.size
[data.classification.entropy - pos * sp[0].classification.entropy - neg * sp[1].classification.entropy, threshold]
end
gain = gain.max { |a, b| a[0] <=> b[0] }
return [-1, -1] if gain.size == 0
gain
end
# ID3 for discrete label cases
def id3_discrete(data, attributes, attribute)
index = attributes.index(attribute)
values = data.map { |row| row[index] }.uniq
remainder = values.sort.sum do |val|
classification = data.each_with_object([]) do |row, result|
result << row.last if row[index] == val
end
((classification.size.to_f / data.size) * classification.entropy)
end
[data.classification.entropy - remainder, index]
end
def predict(test)
descend(@tree, test)
end
def graph(filename, file_type = 'png')
require 'graphr'
dgp = DotGraphPrinter.new(build_tree)
dgp.size = ''
dgp.node_labeler = proc { |n| n.split("\n").first }
dgp.write_to_file("#{filename}.#{file_type}", file_type)
rescue LoadError
STDERR.puts "Error: Cannot generate graph."
STDERR.puts " The 'graphr' gem doesn't seem to be installed."
STDERR.puts " Run 'gem install graphr' or add it to your Gemfile."
end
def ruleset
rs = Ruleset.new(@attributes, @data, @default, @type)
rs.rules = build_rules
rs
end
def build_rules(tree = @tree)
attr = tree.to_a.first
cases = attr[1].to_a
rules = []
cases.each do |c, child|
if child.is_a?(Hash)
build_rules(child).each do |r|
r2 = r.clone
r2.premises.unshift([attr.first, c])
rules << r2
end
else
rules << Rule.new(@attributes, [[attr.first, c]], child)
end
end
rules
end
private
def descend(tree, test)
attr = tree.to_a.first
return @default unless attr
if type(attr.first.attribute) == :continuous
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) && test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) && test[@attributes.index(attr.first.attribute)] < attr.first.threshold
return descend(attr[1]['>='], test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return descend(attr[1]['<'], test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
else
return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash)
return descend(attr[1][test[@attributes.index(attr[0].attribute)]], test)
end
end
def build_tree(tree = @tree)
return [] unless tree.is_a?(Hash)
return [['Always', @default]] if tree.empty?
attr = tree.to_a.first
links = attr[1].keys.collect do |key|
parent_text = "#{attr[0].attribute}\n(#{attr[0].object_id})"
if attr[1][key].is_a?(Hash)
child = attr[1][key].to_a.first[0]
child_text = "#{child.attribute}\n(#{child.object_id})"
else
child = attr[1][key]
child_text = "#{child}\n(#{child.to_s.clone.object_id})"
end
if type(attr[0].attribute) == :continuous
label_text = "#{key} #{attr[0].threshold}"
else
label_text = key
end
[parent_text, child_text, label_text]
end
attr[1].keys.each { |key| links += build_tree(attr[1][key]) }
links
end
end
class Rule
attr_accessor :premises
attr_accessor :conclusion
attr_accessor :attributes
def initialize(attributes, premises = [], conclusion = nil)
@attributes = attributes
@premises = premises
@conclusion = conclusion
end
def to_s
str = ''
@premises.each do |p|
if p.first.threshold
str += "#{p.first.attribute} #{p.last} #{p.first.threshold}"
else
str += "#{p.first.attribute} = #{p.last}"
end
str += "\n"
end
str += "=> #{@conclusion} (#{accuracy})"
end
def predict(test)
verifies = true
@premises.each do |p|
if p.first.threshold # Continuous
if !(p.last == '>=' && test[@attributes.index(p.first.attribute)] >= p.first.threshold) && !(p.last == '<' && test[@attributes.index(p.first.attribute)] < p.first.threshold)
verifies = false
break
end
else # Discrete
if test[@attributes.index(p.first.attribute)] != p.last
verifies = false
break
end
end
end
return @conclusion if verifies
nil
end
def get_accuracy(data)
correct = 0
total = 0
data.each do |d|
prediction = predict(d)
correct += 1 if d.last == prediction
total += 1 unless prediction.nil?
end
(correct.to_f + 1) / (total.to_f + 2)
end
def accuracy(data = nil)
data.nil? ? @accuracy : @accuracy = get_accuracy(data)
end
end
class Ruleset
attr_accessor :rules
def initialize(attributes, data, default, type)
@attributes = attributes
@default = default
@type = type
mixed_data = data.sort_by { rand }
cut = (mixed_data.size.to_f * 0.67).to_i
@train_data = mixed_data.slice(0..cut - 1)
@prune_data = mixed_data.slice(cut..-1)
end
def train(train_data = @train_data, attributes = @attributes, default = @default)
dec_tree = DecisionTree::ID3Tree.new(attributes, train_data, default, @type)
dec_tree.train
@rules = dec_tree.build_rules
@rules.each { |r| r.accuracy(train_data) } # Calculate accuracy
prune
end
def prune(data = @prune_data)
@rules.each do |r|
(1..r.premises.size).each do
acc1 = r.accuracy(data)
p = r.premises.pop
if acc1 > r.get_accuracy(data)
r.premises.push(p)
break
end
end
end
@rules = @rules.sort_by { |r| -r.accuracy(data) }
end
def to_s
str = ''
@rules.each { |rule| str += "#{rule}\n\n" }
str
end
def predict(test)
@rules.each do |r|
prediction = r.predict(test)
return prediction, r.accuracy unless prediction.nil?
end
[@default, 0.0]
end
end
class Bagging
attr_accessor :classifiers
def initialize(attributes, data, default, type)
@classifiers = []
@type = type
@data = data
@attributes = attributes
@default = default
end
def train(data = @data, attributes = @attributes, default = @default)
@classifiers = 10.times.map do |i|
Ruleset.new(attributes, data, default, @type)
end
@classifiers.each_with_index do |classifier, index|
puts "Processing classifier ##{index + 1}"
classifier.train(data, attributes, default)
end
end
def predict(test)
predictions = Hash.new(0)
@classifiers.each do |c|
p, accuracy = c.predict(test)
predictions[p] += accuracy unless p.nil?
end
return @default, 0.0 if predictions.empty?
winner = predictions.sort_by { |_k, v| -v }.first
[winner[0], winner[1].to_f / @classifiers.size.to_f]
end
end
end