mirror of
https://github.com/dkam/decisiontree.git
synced 2025-12-28 07:04:53 +00:00
added support for continuous and discrete attributes in the same dataset
This commit is contained in:
19
..gemspec
Normal file
19
..gemspec
Normal file
@@ -0,0 +1,19 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
lib = File.expand_path('../lib', __FILE__)
|
||||
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
||||
require './version'
|
||||
|
||||
Gem::Specification.new do |gem|
|
||||
gem.name = "."
|
||||
gem.version = .::VERSION
|
||||
gem.authors = ["Chris Nelson"]
|
||||
gem.email = ["chris@gaslightsoftware.com"]
|
||||
gem.description = %q{TODO: Write a gem description}
|
||||
gem.summary = %q{TODO: Write a gem summary}
|
||||
gem.homepage = ""
|
||||
|
||||
gem.files = `git ls-files`.split($/)
|
||||
gem.executables = gem.files.grep(%r{^bin/}).map{ |f| File.basename(f) }
|
||||
gem.test_files = gem.files.grep(%r{^(test|spec|features)/})
|
||||
gem.require_paths = ["lib"]
|
||||
end
|
||||
17
.gitignore
vendored
Normal file
17
.gitignore
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
*.gem
|
||||
*.rbc
|
||||
.bundle
|
||||
.config
|
||||
.yardoc
|
||||
Gemfile.lock
|
||||
InstalledFiles
|
||||
_yardoc
|
||||
coverage
|
||||
doc/
|
||||
lib/bundler/man
|
||||
pkg
|
||||
rdoc
|
||||
spec/reports
|
||||
test/tmp
|
||||
test/version_tmp
|
||||
tmp
|
||||
4
Gemfile
Normal file
4
Gemfile
Normal file
@@ -0,0 +1,4 @@
|
||||
source 'https://rubygems.org'
|
||||
|
||||
# Specify your gem's dependencies in ..gemspec
|
||||
gemspec
|
||||
@@ -47,7 +47,10 @@ Gem::Specification.new do |s|
|
||||
"examples/simple.rb"
|
||||
]
|
||||
s.add_runtime_dependency "graphr"
|
||||
|
||||
s.add_development_dependency "rspec"
|
||||
s.add_development_dependency "rspec-given"
|
||||
s.add_development_dependency "pry"
|
||||
|
||||
if s.respond_to? :specification_version then
|
||||
current_version = Gem::Specification::CURRENT_SPECIFICATION_VERSION
|
||||
s.specification_version = 3
|
||||
|
||||
@@ -15,9 +15,9 @@ class Object
|
||||
end
|
||||
end
|
||||
|
||||
class Array
|
||||
def classification; collect { |v| v.last }; end
|
||||
|
||||
class Array
|
||||
def classification; collect { |v| v.last }; end
|
||||
|
||||
# calculate information entropy
|
||||
def entropy
|
||||
return 0 if empty?
|
||||
@@ -51,28 +51,34 @@ module DecisionTree
|
||||
|
||||
@tree = id3_train(data2, attributes, default)
|
||||
end
|
||||
|
||||
def id3_train(data, attributes, default, used={})
|
||||
# Choose a fitness algorithm
|
||||
case @type
|
||||
when :discrete; fitness = proc{|a,b,c| id3_discrete(a,b,c)}
|
||||
|
||||
def type(attribute)
|
||||
@type.is_a?(Hash) ? @type[attribute.to_sym] : @type
|
||||
end
|
||||
|
||||
def fitness_for(attribute)
|
||||
case type(attribute)
|
||||
when :discrete; fitness = proc{|a,b,c| id3_discrete(a,b,c)}
|
||||
when :continuous; fitness = proc{|a,b,c| id3_continuous(a,b,c)}
|
||||
end
|
||||
|
||||
return default if data.empty?
|
||||
end
|
||||
|
||||
def id3_train(data, attributes, default, used={})
|
||||
return default if data.empty?
|
||||
|
||||
# return classification if all examples have the same classification
|
||||
return data.first.last if data.classification.uniq.size == 1
|
||||
|
||||
# Choose best attribute (1. enumerate all attributes / 2. Pick best attribute)
|
||||
performance = attributes.collect { |attribute| fitness.call(data, attributes, attribute) }
|
||||
performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) }
|
||||
max = performance.max { |a,b| a[0] <=> b[0] }
|
||||
best = Node.new(attributes[performance.index(max)], max[1], max[0])
|
||||
best.threshold = nil if @type == :discrete
|
||||
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
|
||||
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
|
||||
tree, l = {best => {}}, ['>=', '<']
|
||||
|
||||
case @type
|
||||
|
||||
fitness = fitness_for(best.attribute)
|
||||
case type(best.attribute)
|
||||
when :continuous
|
||||
data.partition { |d| d[attributes.index(best.attribute)] >= best.threshold }.each_with_index { |examples, i|
|
||||
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness)
|
||||
@@ -82,7 +88,7 @@ module DecisionTree
|
||||
partitions = values.collect { |val| data.select { |d| d[attributes.index(best.attribute)] == val } }
|
||||
partitions.each_with_index { |examples, i|
|
||||
tree[best][values[i]] = id3_train(examples, attributes-[values[i]], (data.classification.mode rescue 0), &fitness)
|
||||
}
|
||||
}
|
||||
end
|
||||
|
||||
tree
|
||||
@@ -96,32 +102,32 @@ module DecisionTree
|
||||
thresholds.pop
|
||||
#thresholds -= used[attribute] if used.has_key? attribute
|
||||
|
||||
gain = thresholds.collect { |threshold|
|
||||
gain = thresholds.collect { |threshold|
|
||||
sp = data.partition { |d| d[attributes.index(attribute)] >= threshold }
|
||||
pos = (sp[0].size).to_f / data.size
|
||||
neg = (sp[1].size).to_f / data.size
|
||||
|
||||
|
||||
[data.classification.entropy - pos*sp[0].classification.entropy - neg*sp[1].classification.entropy, threshold]
|
||||
}.max { |a,b| a[0] <=> b[0] }
|
||||
|
||||
return [-1, -1] if gain.size == 0
|
||||
gain
|
||||
end
|
||||
|
||||
|
||||
# ID3 for discrete label cases
|
||||
def id3_discrete(data, attributes, attribute)
|
||||
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
|
||||
partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } }
|
||||
remainder = partitions.collect {|p| (p.size.to_f / data.size) * p.classification.entropy}.inject(0) {|i,s| s+=i }
|
||||
|
||||
|
||||
[data.classification.entropy - remainder, attributes.index(attribute)]
|
||||
end
|
||||
|
||||
def predict(test)
|
||||
return (@type == :discrete ? descend_discrete(@tree, test) : descend_continuous(@tree, test))
|
||||
descend(@tree, test)
|
||||
end
|
||||
|
||||
def graph(filename)
|
||||
def graph(filename)
|
||||
dgp = DotGraphPrinter.new(build_tree)
|
||||
dgp.write_to_file("#{filename}.png", "png")
|
||||
end
|
||||
@@ -151,22 +157,20 @@ module DecisionTree
|
||||
end
|
||||
|
||||
private
|
||||
def descend_continuous(tree, test)
|
||||
def descend(tree, test)
|
||||
attr = tree.to_a.first
|
||||
return @default if !attr
|
||||
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
return descend_continuous(attr[1]['>='],test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return descend_continuous(attr[1]['<'],test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
end
|
||||
|
||||
def descend_discrete(tree, test)
|
||||
attr = tree.to_a.first
|
||||
return @default if !attr
|
||||
return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash)
|
||||
return descend_discrete(attr[1][test[@attributes.index(attr[0].attribute)]],test)
|
||||
if type(attr.first.attribute) == :continuous
|
||||
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
return descend(attr[1]['>='],test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return descend(attr[1]['<'],test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
else
|
||||
return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash)
|
||||
return descend(attr[1][test[@attributes.index(attr[0].attribute)]],test)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
def build_tree(tree = @tree)
|
||||
return [] unless tree.is_a?(Hash)
|
||||
return [["Always", @default]] if tree.empty?
|
||||
@@ -282,7 +286,7 @@ module DecisionTree
|
||||
|
||||
def predict(test)
|
||||
@rules.each do |r|
|
||||
prediction = r.predict(test)
|
||||
prediction = r.predict(test)
|
||||
return prediction, r.accuracy unless prediction.nil?
|
||||
end
|
||||
return @default, 0.0
|
||||
|
||||
64
spec/id3_spec.rb
Normal file
64
spec/id3_spec.rb
Normal file
@@ -0,0 +1,64 @@
|
||||
require 'spec_helper'
|
||||
|
||||
describe describe DecisionTree::ID3Tree do
|
||||
|
||||
describe "discrete attributes" do
|
||||
Given(:labels) { ["hungry", "color"] }
|
||||
Given(:data) do
|
||||
[
|
||||
["yes", "red", "angry"],
|
||||
["no", "blue", "not angry"],
|
||||
["yes", "blue", "not angry"],
|
||||
["no", "red", "not angry"]
|
||||
]
|
||||
end
|
||||
Given(:tree) { DecisionTree::ID3Tree.new(labels, data, "not angry", :discrete) }
|
||||
When { tree.train }
|
||||
Then { tree.predict(["yes", "red"]).should == "angry" }
|
||||
Then { tree.predict(["no", "red"]).should == "not angry" }
|
||||
end
|
||||
|
||||
describe "discrete attributes" do
|
||||
Given(:labels) { ["hunger", "happiness"] }
|
||||
Given(:data) do
|
||||
[
|
||||
[8, 7, "angry"],
|
||||
[6, 7, "angry"],
|
||||
[7, 9, "angry"],
|
||||
[7, 1, "not angry"],
|
||||
[2, 9, "not angry"],
|
||||
[3, 2, "not angry"],
|
||||
[2, 3, "not angry"],
|
||||
[1, 4, "not angry"]
|
||||
]
|
||||
end
|
||||
Given(:tree) { DecisionTree::ID3Tree.new(labels, data, "not angry", :continuous) }
|
||||
When { tree.train }
|
||||
Then { tree.graph("continuous") }
|
||||
Then { tree.predict([7, 7]).should == "angry" }
|
||||
Then { tree.predict([2, 3]).should == "not angry" }
|
||||
end
|
||||
|
||||
describe "a mixture" do
|
||||
Given(:labels) { ["hunger", "color"] }
|
||||
Given(:data) do
|
||||
[
|
||||
[8, "red", "angry"],
|
||||
[6, "red", "angry"],
|
||||
[7, "red", "angry"],
|
||||
[7, "blue", "not angry"],
|
||||
[2, "red", "not angry"],
|
||||
[3, "blue", "not angry"],
|
||||
[2, "blue", "not angry"],
|
||||
[1, "red", "not angry"]
|
||||
]
|
||||
end
|
||||
Given(:tree) { DecisionTree::ID3Tree.new(labels, data, "not angry", color: :discrete, hunger: :continuous) }
|
||||
When { tree.train }
|
||||
Then { tree.graph("continuous") }
|
||||
Then { tree.predict([7, "red"]).should == "angry" }
|
||||
Then { tree.predict([2, "blue"]).should == "not angry" }
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
3
spec/spec_helper.rb
Normal file
3
spec/spec_helper.rb
Normal file
@@ -0,0 +1,3 @@
|
||||
require 'rspec/given'
|
||||
require 'decisiontree'
|
||||
require 'pry'
|
||||
Reference in New Issue
Block a user