added support for continuous and discrete attributes in the same dataset

This commit is contained in:
Chris Nelson
2012-10-26 19:22:27 -04:00
parent 3e3badc0eb
commit d1dce9be91
7 changed files with 150 additions and 36 deletions

View File

@@ -15,9 +15,9 @@ class Object
end
end
class Array
def classification; collect { |v| v.last }; end
class Array
def classification; collect { |v| v.last }; end
# calculate information entropy
def entropy
return 0 if empty?
@@ -51,28 +51,34 @@ module DecisionTree
@tree = id3_train(data2, attributes, default)
end
def id3_train(data, attributes, default, used={})
# Choose a fitness algorithm
case @type
when :discrete; fitness = proc{|a,b,c| id3_discrete(a,b,c)}
def type(attribute)
@type.is_a?(Hash) ? @type[attribute.to_sym] : @type
end
def fitness_for(attribute)
case type(attribute)
when :discrete; fitness = proc{|a,b,c| id3_discrete(a,b,c)}
when :continuous; fitness = proc{|a,b,c| id3_continuous(a,b,c)}
end
return default if data.empty?
end
def id3_train(data, attributes, default, used={})
return default if data.empty?
# return classification if all examples have the same classification
return data.first.last if data.classification.uniq.size == 1
# Choose best attribute (1. enumerate all attributes / 2. Pick best attribute)
performance = attributes.collect { |attribute| fitness.call(data, attributes, attribute) }
performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) }
max = performance.max { |a,b| a[0] <=> b[0] }
best = Node.new(attributes[performance.index(max)], max[1], max[0])
best.threshold = nil if @type == :discrete
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
tree, l = {best => {}}, ['>=', '<']
case @type
fitness = fitness_for(best.attribute)
case type(best.attribute)
when :continuous
data.partition { |d| d[attributes.index(best.attribute)] >= best.threshold }.each_with_index { |examples, i|
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness)
@@ -82,7 +88,7 @@ module DecisionTree
partitions = values.collect { |val| data.select { |d| d[attributes.index(best.attribute)] == val } }
partitions.each_with_index { |examples, i|
tree[best][values[i]] = id3_train(examples, attributes-[values[i]], (data.classification.mode rescue 0), &fitness)
}
}
end
tree
@@ -96,32 +102,32 @@ module DecisionTree
thresholds.pop
#thresholds -= used[attribute] if used.has_key? attribute
gain = thresholds.collect { |threshold|
gain = thresholds.collect { |threshold|
sp = data.partition { |d| d[attributes.index(attribute)] >= threshold }
pos = (sp[0].size).to_f / data.size
neg = (sp[1].size).to_f / data.size
[data.classification.entropy - pos*sp[0].classification.entropy - neg*sp[1].classification.entropy, threshold]
}.max { |a,b| a[0] <=> b[0] }
return [-1, -1] if gain.size == 0
gain
end
# ID3 for discrete label cases
def id3_discrete(data, attributes, attribute)
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } }
remainder = partitions.collect {|p| (p.size.to_f / data.size) * p.classification.entropy}.inject(0) {|i,s| s+=i }
[data.classification.entropy - remainder, attributes.index(attribute)]
end
def predict(test)
return (@type == :discrete ? descend_discrete(@tree, test) : descend_continuous(@tree, test))
descend(@tree, test)
end
def graph(filename)
def graph(filename)
dgp = DotGraphPrinter.new(build_tree)
dgp.write_to_file("#{filename}.png", "png")
end
@@ -151,22 +157,20 @@ module DecisionTree
end
private
def descend_continuous(tree, test)
def descend(tree, test)
attr = tree.to_a.first
return @default if !attr
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] < attr.first.threshold
return descend_continuous(attr[1]['>='],test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return descend_continuous(attr[1]['<'],test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
end
def descend_discrete(tree, test)
attr = tree.to_a.first
return @default if !attr
return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash)
return descend_discrete(attr[1][test[@attributes.index(attr[0].attribute)]],test)
if type(attr.first.attribute) == :continuous
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] < attr.first.threshold
return descend(attr[1]['>='],test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return descend(attr[1]['<'],test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
else
return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash)
return descend(attr[1][test[@attributes.index(attr[0].attribute)]],test)
end
end
def build_tree(tree = @tree)
return [] unless tree.is_a?(Hash)
return [["Always", @default]] if tree.empty?
@@ -282,7 +286,7 @@ module DecisionTree
def predict(test)
@rules.each do |r|
prediction = r.predict(test)
prediction = r.predict(test)
return prediction, r.accuracy unless prediction.nil?
end
return @default, 0.0